Abstract
Plasmonic structures based on stacked layers of metal and dielectric materials excel as broadband absorbers because of the nonlinear relationship between the compound materials’ dispersion characteristics and the multilayered structure’s actual performance. In this work, radiation absorption along the plasmonic absorber is studied. Broadband absorptance spectra play an important role in applications such as photovoltaics, detectors, modulators, and emitters. We propose and analyze plasmonic stacked structures that exhibit high broadband absorption. For this purpose, an inverse design approach has been implemented using a conventional genetic algorithm as a global optimizer in conjunction with a pattern search as a local optimizer. The proposed strategy found structures with absorption covering the visible spectrum, maintaining its performance for high incident angles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.