Abstract

Efficient extraction of light from a high refractive index silicon waveguide out of a chip is difficult to achieve. An inverse design approach was employed using the particle swarm optimization method to attain a vertical emitting meta-grating coupler with high coupling efficiency in a 220-nm-thick silicon-on-insulator platform. By carefully selecting the figure of merit and appropriately defining parameter space, unique L-shape and U-shape grating elements that boosted the out-of-plane radiation of light were obtained. In addition, a 65.7% (−1.82 dB) outcoupling efficiency and a 60.2% (−2.2 dB) fiber-to-chip vertical coupling efficiency with an 88 nm 3 dB bandwidth were demonstrated by numerical simulation. Considering fabrication constraints, the optimized complex meta-grating coupler was modified to correspond to two etching steps and was then fabricated with a complementary metal-oxide-semiconductor-compatible process. The modified meta-grating coupler exhibited a simulated coupling efficiency of 57.5% (−2.4 dB) with a 74 nm 3-dB bandwidth in the C-band and an experimentally measured coupling efficiency of 38% (−4.2 dB).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.