Abstract

We introduce a methodology for density-based topology optimization of non-Fourier thermal transport in nanostructures, based upon adjoint-based sensitivity analysis of the phonon Boltzmann transport equation (BTE) and a novel material interpolation technique, the “transmission interpolation model” (TIM). The key challenge in BTE optimization is handling the interplay between real- and momentum-resolved material properties. By parameterizing the material density with an interfacial transmission coefficient, TIM is able to recover the hard-wall and no-interface limits, while guaranteeing a smooth transition between void and solid regions. We first use our approach to tailor the effective thermal conductivity tensor of a periodic nanomaterial; then, we maximize classical phonon size effects under constrained diffusive transport, identifying a promising new thermoelectric material design. Our method enables the systematic optimization of materials for heat management and conversion and, more broadly, the design of devices where diffusive transport is not valid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.