Abstract

Full control of spontaneous emission is essential in various fields of optics. This work presents an inverse designed light-emitting scattering optical element that includes full control of spontaneously emitted photons (i.e., enhancement at a central frequency and suppression at neighboring frequencies) and directionality of the output beam. This is achieved by embedding a one-dimensional optical active element inside a cluster of square shaped gallium arsenide dielectric rods whose positions are optimized by a genetic algorithm. Large spontaneous emission enhancement of > 70 is predicted at the transition wavelength if high-quality sources are employed. Moreover, neighboring wavelengths are simultaneously suppressed over 10 times. Finally, the radiated beam is highly collimated to only 6 degrees and contains 30 times the energy emitted by the source placed in free space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.