Abstract

We consider a weak scale supersymmetric seesaw model where the higgsino is the next-to-lightest supersymmetric particle and the right-handed sneutrino is the dark matter candidate. It is shown that, in this model, inverse decays, which had been previously neglected, may suppress the sneutrino relic density by several orders of magnitude. After including such processes and numerically solving the appropriate Boltzmann equation, we study the dependence of the relic density on the μ parameter, the sneutrino mass, and the neutrino Yukawa coupling. We find that, even though much smaller than in earlier calculations, the sneutrino relic density is still larger than the observed dark matter density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.