Abstract

Abstract. A novel carbon fibre sensor is developed for the spatially resolved strain measurement. A unique feature of the sensor is the fibre-break resistive measurement principle and the two-core transmission line design. The electrical time domain reflectometry (ETDR) is used in order to realize a spatially resolved measurement of the electrical parameters of the sensor. In this contribution, the process of mapping between the ETDR signals to the existing strain profile is described. Artificial neural networks (ANNs) are used to solve the inverse electromagnetic problem. The investigations were carried out with a sensor patch in a cantilever arm configuration. Overall, 136 experiments with varying strain distribution over the sensor length were performed to generate the necessary training data to learn the ANN model. The validation of the ANN highlights the feasibility as well as the current limits concerning the quantitative accuracy of mapping ETDR signals to strain profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.