Abstract
Polymer particles with inverse bicontinuous structures have attracted considerable attention due to their diverse applications. The conventional generation requires controlling numerous key parameters under strict conditions, such as solvent property, polymer composition, and architecture. In order to improve the preparation efficiency within a broad window, we employed a method by polymerization-induced self-assembly (PISA) against intramolecularly folded single-chain nanoparticles (SCNPs). The SCNPs bear an active site for further polymerization. The SCNPs with smaller sizes facilitate easier controlling of the packing parameter above unity to meet the requirement of the unique structures. The concept is demonstrated by forming the inverse bicontinuous structure through PISA in ethanol against two SCNPs of P4VP(SCNPx%)35-CTA and P(PEGMA20-co-TMSPMA4)(SCNP16.7%)-CTA. The unique structure is easily achieved when growing a relatively shorter polymer chain within a broad window. The work paves the avenue to prepare polymer particles with the unique structure in large scale, and other functional materials are expected by using the functional SCNPs or favorable growth of desired materials within the particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.