Abstract

AbstractRock burst is one of the most serious dynamic disasters in the process of coal resources mining, in order to study its occurrence mechanism and the characteristics of its impact on roadways. Based on the No. 25110 working face of Yuejin Mine in Yi Coal Mine and No. 21032 return air uphill event in Qianqiu Mine, combined with geological conditions, shock location, and source waveform, this paper uses numerical simulation to inverse the dynamic response characteristics of roadway surrounding rock under rock burst. The results show that the plastic strain energy density of No. 25110 working face in Yuejin Mine is mainly distributed around the roadway, and the maximum plastic strain energy density is 3.30 × 107 J at 75 ms, all rock masses around the roadway are damaged, and the maximum damage variable value is 0.44. The plastic strain energy density of No. 21032 return air uphill in Qianqiu mine is mainly distributed around the lower side of the roadway, and the maximum plastic strain energy density is 2.68 × 108 J at 80 ms, all rock masses around the roadway are damaged, and the maximum damage variable value is 1.76, indicating that the rock masses at the roof and two sides of the roadway have been damaged after the impact. Based on the results of numerical simulation, the energy gradient criterion of rock burst tendency was proposed, the degree of energy accumulation of surrounding rock is measured by the change amplitude of energy gradient, and the tendency index of rock burst is quantified, which provides a new method for the prediction of rock burst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call