Abstract

Rat cardiac and skeletal muscles, which have been used as model tissues for studies of regulation of branched-chain alpha-keto acid (BCKA) oxidation, vary greatly in the activity state of their BCKA dehydrogenase. In the present experiment, we have investigated whether they also vary in response of their BCKA dehydrogenase to a metabolic alteration such as diabetes and, if so, to investigate the mechanism that underlies the difference. Diabetes was produced by depriving streptozotocin-treated rats of insulin administration for 96 h. The investigation of BCKA dehydrogenase in the skeletal muscle (gastrocnemius) showed that diabetes 1) increased its activity, 2) increased the protein and gene expressions of all of its subunits (E(1)alpha, E(1)beta, E(2)), 3) increased its activity state, 4) decreased the rate of its inactivation, and 5) decreased the protein expression of its associated kinase (BCKAD kinase) without affecting its gene expression. In sharp contrast, the investigation of BCKA dehydrogenase in the cardiac muscle showed that diabetes 1) decreased its activity, 2) had no effect on either protein or gene expression of any of its subunits, 3) decreased its activity state, 4) increased its rate of inactivation, and 5) increased both the protein and gene expressions of its associated kinase. In conclusion, our data suggest that, in diabetes, the protein expression of BCKAD kinase is downregulated posttranscriptionally in the skeletal muscle, whereas it is upregulated pretranslationally in the cardiac muscle, causing inverse alterations of BCKA dehydrogenase activity in these muscles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call