Abstract
The inverse 1-median problem consists in modifying the weights of the customers at minimum cost such that a prespecified supplier becomes the 1-median of modified location problem. A linear time algorithm is first proposed for the inverse problem under weighted l ? norm. Then two polynomial time algorithms with time complexities O(n log n) and O(n) are given for the problem under weighted bottleneck-Hamming distance, where n is the number of vertices. Finally, the problem under weighted sum-Hamming distance is shown to be equivalent to a 0-1 knapsack problem, and hence is $${\mathcal{NP}}$$ -hard.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.