Abstract

Cancer cells are considered to have high morphological heterogeneity in human melanoma tissue. Here, we report that epithelial cancer cells are dominant in different development stages of human melanoma tissues. The cellular and molecular mechanisms that maintain melanoma cells in the epithelial state are further investigated in the A2058 cell line. We find that micropore (8 µm) transwell invasion, but not superficial migration in the scratch assay, can induce remarkable morphological changes between epithelial and mesenchymal melanoma cells within 4 days. The morphological switch is associated with dynamic changes of epithelial-mesenchymal transition (EMT) hallmarks E-cadherin and vimentin. Further immunoflurencent staining and co-immunoprecipitation assay showed the uncoupling of the M3 muscarinic acetylcholine receptor (mAChR) and the p75 neurotrophin receptor (p75NTR) in epithelial melanoma cells. Specific knockdown of M3 mAChR by small interfering RNA (siRNA) significantly abrogates the transition of spindle-shaped mesenchymal cells to epithelial cells. Collectively, we report a cellular model of invasiveness-triggered state transition (ITST) in which melanoma cell invasion can induce morphological changes between epithelial and mesenchymal cells. ITST is one of the biological basis for maintaining metastatic melanoma cells in the epithelial state. Furthermore, M3 mAChR receptor-mediated ITST provides a novel therapeutic strategy to inhibit the development ofmalignant melanoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.