Abstract
Lakes represent an important source of atmospheric methane (CH4); however, there are few studies on which lake-dwelling invasive aquatic plants generate CH4. Therefore, in this study, CH4 emissions were measured using a floating chamber and gas chromatography in a subtropical lake in China. We considered four community zones of invasive plants (Eichhornia crassipes), emergent vegetation (Zizania latifolia), floating-plant (Trapa natans) and open-water zones. The results indicate that the flux of CH4 emissions varied between −5.38 and 102.68 mg m−2 h−1. The higher emission values were attributed to lake eutrophication. Moreover, the flux of CH4 emissions in the invasive plant zone was 140–220% higher than that in the open-water and the floating-plant zones. However, there was no significant difference in CH4 emissions between the invasive plant and the emergent vegetation zones. This may be due to a higher production of plants, as well as the rapid reproductive rate of the invasive plants. Finally, CH4 emissions were positively associated with the air and water temperature; however, the emissions were also negatively associated with water depth. Our results suggest that invasive plants enhance freshwater CH4 emissions, thus contributing to global warming.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.