Abstract

Eichhornia crassipes, commonly known as water hyacinth, is a free-floating perennial aquatic plant native to South America, which has been widely introduced on different continents, including Africa. E. crassipes is abundant in both the Congo (Africa) and Amazon (South America) River catchments. We performed a comparative analysis of the ostracod communities (Crustacea, Ostracoda) in the E. crassipes pleuston in the Amazon (South America) and Congo (Africa) River catchments. We also compared the ostracod communities from the invasive E. crassipes with those associated with stands of the native African macrophyte Vossia cuspidata. We recorded 25 species of ostracods associated with E. crassipes in the Amazon and 40 in the Congo River catchments, distributed over 31 ostracod species in E. crassipes and 27 in V. cuspidata. No South American invasive ostracod species were found in the Congolese pleuston. Diversity and richness of Congolese ostracod communities was higher in the invasive (Eichhornia) than in a native plant (Vossia). The highest diversity and abundance of ostracod communities were recorded in the Congo River. The result of principal coordinates analysis, used to evaluate the (dis)similarity between different catchments, showed significant differences in species composition of the communities. However, a dispersion homogeneity test (PERMDISP) showed no significant differences in the variability of the composition of species of ostracods (beta diversity) within Congo and Amazon River catchments. It appears that local ostracod faunas have adapted to exploit the opportunities presented by the floating invasive Eichhornia, which did not act as “Noah’s Ark” by introducing South American ostracods in the Congo River.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call