Abstract

To investigate the anti-inflammatory activity of an invasive and Hp65-producing strain Lactococcus lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) in acute 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis in mice as an innovative therapeutic strategy against Crohn's disease (CD). The pXYCYT:Hsp65 plasmid was transformed into the L. lactis NCDO2118 FnBPA+ strain, resulting in the L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) strain. Then, the functionality of the strain was evaluated in vitro for Hsp65 production by Western blotting and for invasion into Caco-2 cells. The results demonstrated that the strain was able to produce Hsp65 and efficiently invade eukaryotic cells. Subsequently, in vivo, the anti-inflammatory capacity of the recombinant strain was evaluated in colitis induced with TNBS in BALB/c mice. Oral administration of the recombinant strain was able to attenuated the severity of colitis by mainly reducing IL-12 and IL-17 levels and increasing IL-10 and secretory immunoglobulin A levels. The L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) strain contributed to a reduction in inflammatory damage in experimental CD. This study, which used L. lactis for the production and delivery of Hsp65, has scientific relevance because it shows the efficacy of this new strategy based on therapeutic protein delivery into mammalian enterocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call