Abstract

Invasive alien species (IAS) have become a major threat to ecosystems worldwide. From an evolutionary ecological perspective, they allow teasing apart the relative contributions of plasticity and evolutionary divergence in driving rapid phenotypic diversification. When IAS spread across extensive geographic ranges, climatic variation may represent a source of strong natural selection through overwinter mortality and summer heat stress. This could favour local adaptation, i.e., evolutionary divergence of certain traits. IAS, however, are likely to show plasticity in survival-related traits, and environmental fluctuation in their new distribution range could favour the maintenance of this pre-existing phenotypic plasticity. By contrast, sexually selected traits are more likely to undergo evolutionary divergence when components of sexual selection differ geographically. Here, using data from a common-garden rearing experiment of Western mosquitofish (Gambusia affinis Baird and Girard, 1853) from five populations across the species' invasive range in China, we show that invasive mosquitofish have retained plasticity in key physiological (thermal tolerances), morphological and life-history traits even 100 years after their introduction to China, but exhibit heritable population differences in several sexually selected traits, including the shape of the male copulatory organ. Adaptive plasticity of traits linked to immediate survival in different thermal environments—while likely responsible for the species' extraordinary invasion success—could slow down genetic evolution. Several sexually selected traits could diverge geographically and show rapid evolutionary change, e.g., because climate alters selective landscapes arising from mate competition as an indirect consequence of variation in overwinter mortality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call