Abstract

Abstract Invasive species alter the ecology of marine ecosystems through a variety of mechanisms or combination of mechanisms. This study documented critical physical parameters altered by the invasive red macroalga Gracilaria salicornia in situ, including: reduced irradiance, increased sedimentation, and marked variation in diurnal dissolved oxygen and pH cycles in Kāne‘ohe Bay, O‘ahu, Hawai‘i. Paired studies showed that algal mats reduced irradiance by 99% and doubled sediment accumulation. Several mats developed hypoxia and hyperoxia in the extreme minima and maxima, though there was no statistical difference detected in the mean or the variability of dissolved oxygen between different 30 min time points of 24 h cycles between algal mat-open reef pairs. The algal mat significantly acidified the water under the algal mat by decreasing pH by 0.10–0.13 pH units below open reef pH. A minimum of pH 7.47 occurred between 14 and 19 h after sunrise. Our combined results suggest that mats of G. salicornia can alter various physical parameters on a fine scale and time course not commonly detected. These changes in parameters give insight into the underlying basis for negative impact, and suggest new ways in which the presence of invasive species leads to decline of coral reef ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call