Abstract

The 24 hour activity patterns of three non-native gobiids (round goby Neogobius melanostomus, Western tubenose goby Proterorhinus semilunaris and bighead goby Ponticola kessleri) were assessed over 46 consecutive months between 2011 and 2014 from their occurrence in the cooling water intake of a nuclear power plant on the River Rhine, Germany. In total, 117717 gobiids were identified and classified. The occurrence of all three species varied strongly between sampling years, and species-specific activity triggers were identified. The activity of juveniles of all three gobiids species was positively temperature dependent while adult tubenose goby activity appeared to be negatively temperature dependent. Increasing fluvial discharge in the adjoining main river stimulated the activity of juvenile round goby but inhibited activity of adult tubenose goby. Except for adult bighead goby, activity was also structured by time of day, but with no uniform mean. Meteorological factors such as precipitation, air pressure and duration of sunshine hours had little or no influence on gobiid activity. On selected rare occasions, mainly at night, all three species exhibited pulsed swarming behaviour, with thousands of individuals recorded in the intake water. Round goby swarms exhibited both the highest intensity and the largest swarming individuals, suggesting a potential competitive advantage over tubenose and bighead goby. Electric fishing surveys in natural river stretches corroborated this observation. Negative effects on the native fish fauna were apparent only for the bullhead, Cottus gobio.The activity triggers identified offer a unique insight into the invasion mechanisms of these ecosystem-changing non-native gobiids.

Highlights

  • The use of water from natural systems as a coolant in thermal power stations leads to a wide range of ecological impacts on aquatic communities in both the intake and outtake stretches

  • Based on the local fishery law (Landesfischereiverordnung, §2) all non-native fish has to be removed, all gobiids were stunned by a blow on the head and expertly killed immediately by a cardiac stab according to the German Animal Protection Law (§ 4) and the ordinance of slaughter and killing of animals (Tierschlachtverordnung § 13)

  • During the study period a total of 6654592 fish were counted in the sampling container. 45.1% of them (n = 3001388) were larvae (< 2 cm total body lengths (TL), mostly cyprinids) and 46.6% (n = 3102326) were roach (Rutilus rutilus), bream (Abramis brama), perch (Perca fluviatilis) or zander (Sander lucioperca) ! 2 cm TL

Read more

Summary

Introduction

The use of water from natural systems as a coolant in thermal power stations leads to a wide range of ecological impacts on aquatic communities in both the intake and outtake stretches. Thermal loading of cooling water interferes directly with physiological processes of the biota, such as enzyme activity, feeding, reproduction, respiration, growth and photosynthesis [1]. Of still greater potential impact, are the losses of various life-stages of invertebrates and fishes captured on intake screens or entrained within cooling systems. It is not uncommon for millions of fishes and crustaceans to be impinged on power plant intake screens each year [2].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call