Abstract

Alien species often become invasive by triggering the growth of pathogens that exert a strong negative effect on the native species. Using an extended Lotka–Volterra plant competition model that includes pathogen dynamics with a strong Allee effect we identify a bistability range of counter-propagating fronts representing invasion and recovery dynamics. The fronts differ in the levels of the pathogen in the front zone; high, beyond the Allee threshold for the invasion front and low, below that threshold for the recovery front. Invasion reversal is then studied as induced transitions from invasion fronts to recovery fronts. The study suggests managing invasion by local manipulations in the front zone that increase the Allee threshold and thereby reverse the front from invasion to recovery. We demonstrate numerically direct and indirect manipulations of this kind.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.