Abstract
We establish two links between two-dimensional invasion percolation and Kesten's incipient infinite cluster (IIC). We first prove that the k th moment of the number of invaded sites within the box [−n, n]×[−n, n] is of order (n 2π n ) k , for k≥1, where π n is the probability that the origin in critical percolation is connected to the boundary of a box of radius n. This improves a result of Y. Zhang. We show that the size of the invaded region, when scaled by n 2π n , is tight. Secondly, we prove that the invasion cluster looks asymptotically like the IIC, when viewed from an invaded site v, in the limit |v|→∞. We also establish this when an invaded site v is chosen at random from a box of radius n, and n→∞.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.