Abstract

Plasmodium falciparum malaria merozoites require erythrocyte sialic acid for optimal invasion of human erythrocytes. Since mouse erythrocytes have the form of sialic acid found on human erythrocytes (N-acetyl neuraminic acid), mouse erythrocytes were tested for invasion in vitro. The Camp and 7G8 strains of P. falciparum invaded mouse erythrocytes at 17-45% of the invasion rate of human erythrocytes. Newly invaded mouse erythrocytes morphologically resembled parasitized human erythrocytes as shown on Giemsa-stained blood films and by electron microscopy. The rim of parasitized mouse erythrocytes contained the P. falciparum 155-kD protein, which is on the rim of ring-infected human erythrocytes. Camp but not 7G8 invaded rat erythrocytes, indicating receptor heterogeneity. These data suggest that it may be possible to adapt the asexual erythrocytic stage of P. falciparum to rodents. The development of a rodent model of P. falciparum malaria could facilitate vaccine development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.