Abstract

The group B streptococcus (GBS) is an opportunistic bacterial pathogen with the ability to cause invasive disease. While the ability of GBS to invade a number of host-cell types has been clearly demonstrated, the invasion process is not well understood at the molecular level. What has been well established is that modulation of host-cell actin microfilaments is essential for GBS invasion to occur. Phosphoinositide-3 kinase (PI3K) is a key regulator of the cytoskeleton in eukaryotic cells. Our goal in this investigation was to explore the role of the PI3K/Akt signalling pathway in epithelial cell invasion by GBS. The epithelial cell invasion process was mimicked using the HeLa 229 cell-culture model. Treating HeLa cells with chemical inhibitors of PI3K, Akt or Ras prior to bacterial infection inhibited GBS invasion but not attachment; treatment with 30 microM LY294002 (PI3K inhibitor) reduced GBS invasion by 75%, 20 microM L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (ICIO) (Akt inhibitor) reduced GBS invasion by 50%, and 10 microM manumycin A (Ras inhibitor) inhibited GBS invasion by 90%. Genetic inactivation of the p85alpha or p110alpha PI3K subunits in HeLa cells also reduced GBS invasion by 55 and 30%, respectively. Western blot analysis revealed that phosphorylation of host-cell Akt and glycogen synthase kinase-3 (GSK-3) occurs in response to GBS infection, and that this is mediated upstream by PI3K. Infection of HeLa cells with GBS triggers pro-survival signalling and protects the HeLa cells from camptothecin-induced caspase-3 cleavage. The results from this investigation show that GBS both requires and activates the PI3K/Akt host-cell signalling pathway during invasion of epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.