Abstract

Enteropathogenic Escherichia coli (EPEC) has been shown to disrupt the barrier function of host intestinal epithelial tissues through entering tight junctions. However, the mechanism by which this occurs remains poorly understood. In this study, we determined that EPEC invades host cells through tight junctions as it initiates infection. Immunofluorescence microscopy revealed redistribution of the tight-junction proteins occludin and ZO-1 from an intercellular to a cytoplasmic location after EPEC invasion. Flotillin-1 was recruited to sites of EPEC entry. EPEC entered host cells through tight-junction membrane microdomains. Tight-junction ultrastructure was disrupted following EPEC infection, accompanied by loss of barrier function. EPEC infection caused a time-dependent decrease in trans-epithelial electrical resistance. Subcellular fractionation using discontinuous sucrose density gradients demonstrated a decline in raft-associated occludin following exposure to EPEC. These results indicate the important role of host membrane tight-junction microdomains in EPEC invasion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.