Abstract

Defectless irreducible polynomials over a Henselian valued field (F, v) have been studied by means of strict systems of polynomial extensions and complete (also called "saturated") distinguished chains. Strong connections are developed here between these two approaches and applications made to both. In the tame case in which a root α of an irreducible polynomial f generates a tamely ramified extension of (F, v), simple formulas are given for the Krasner constant, the Brink separant and the diameter of f. In this case a (best possible) result is given showing that a sufficiently good approximation in an extension field K of F to a root of a defectless polynomial f over F guarantees the existence of an exact root of f in K. Also in the tame case a (best possible) result is given describing when a polynomial is sufficiently close to a defectless polynomial so as to guarantee that the roots of the two polynomials generate the same extension fields. Another application in the tame case gives a simple characterization of the minimal pairs (in the sense of N. Popescu et al.). A key technical result is a computation in the tame case of the Newton polygon of f(x+α). Invariants of defectless polynomials are discussed and the existence of defectless polynomials with given invariants is proven. Khanduja's characterization of the tame polynomials whose Krasner constants equal their diameters is generalized to arbitrary defectless polynomials. Much of the work described here will be seen not to require the hypothesis that (F, v) is Henselian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.