Abstract

The notion of two-sided cell, which was originally introduced by A. Joseph and reformulated by D. Kazhdan and G. Lusztig, has played an important role in the representation theory. Results concerning them have been obtained by very deep and sometimes ad hoc arguments. Here we introduce certain polynomial invariants for irreducible representations of Weyl groups. Our invariants are easily calculated, and the calculational results show that they almost determine the two-sided cells. Moreover, the factorization pattern of our polynomial invariants seems to be controlled by the natural parameter set M(G) of each two-sided cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.