Abstract

We study the existence of quasi-periodic, invariant tori in a nearly integrable Hamiltonian system of high order proper degeneracy, i.e., the integrable part of the Hamiltonian involves several time scales and at each time scale the corresponding Hamiltonian depends on only part of the action variables. Such a Hamiltonian system arises frequently in problems of celestial mechanics, for instance, in perturbed Kepler problems like the restricted and non-restricted 3-body problems and spatial lunar problems in which several bodies with very small masses are coupled with two massive bodies and the nearly integrable Hamiltonian systems naturally involve different time scales. Using KAM method, we will show under certain higher order non-degenerate conditions of Bruno–Russmann type that the majority of quasi-periodic, invariant tori associated with the integrable part will persist after the non-integrable perturbation. This actually concludes the KAM metric stability for such a properly degenerate Hamiltonian system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.