Abstract

We examine from an invariant theory viewpoint the monoid algebras for two monoids having large symmetry groups. The first monoid is the free left-regular band on $n$ letters, defined on the set of all injective words, that is, the words with at most one occurrence of each letter. This monoid carries the action of the symmetric group. The second monoid is one of its $q$-analogues, considered by K. Brown, carrying an action of the finite general linear group. In both cases, we show that the invariant subalgebras are semisimple commutative algebras, and characterize them using Stirling and $q$-Stirling numbers. We then use results from the theory of random walks and random-to-top shuffling to decompose the entire monoid algebra into irreducibles, simultaneously as a module over the invariant ring and as a group representation. Our irreducible decompositions are described in terms of derangement symmetric functions introduced by D\'esarm\'enien and Wachs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call