Abstract
ABSTRACTWe study the invariance properties of various test criteria which have been proposed for hypothesis testing in the context of incompletely specified models, such as models which are formulated in terms of estimating functions (Godambe, 1960) or moment conditions and are estimated by generalized method of moments (GMM) procedures (Hansen, 1982), and models estimated by pseudo-likelihood (Gouriéroux, Monfort, and Trognon, 1984b,c) and M-estimation methods. The invariance properties considered include invariance to (possibly nonlinear) hypothesis reformulations and reparameterizations. The test statistics examined include Wald-type, LR-type, LM-type, score-type, and C(α)−type criteria. Extending the approach used in Dagenais and Dufour (1991), we show first that all these test statistics except the Wald-type ones are invariant to equivalent hypothesis reformulations (under usual regularity conditions), but all five of them are not generally invariant to model reparameterizations, including measurement unit changes in nonlinear models. In other words, testing two equivalent hypotheses in the context of equivalent models may lead to completely different inferences. For example, this may occur after an apparently innocuous rescaling of some model variables. Then, in view of avoiding such undesirable properties, we study restrictions that can be imposed on the objective functions used for pseudo-likelihood (or M-estimation) as well as the structure of the test criteria used with estimating functions and generalized method of moments (GMM) procedures to obtain invariant tests. In particular, we show that using linear exponential pseudo-likelihood functions allows one to obtain invariant score-type and C(α)−type test criteria, while in the context of estimating function (or GMM) procedures it is possible to modify a LR-type statistic proposed by Newey and West (1987) to obtain a test statistic that is invariant to general reparameterizations. The invariance associated with linear exponential pseudo-likelihood functions is interpreted as a strong argument for using such pseudo-likelihood functions in empirical work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.