Abstract

In this paper, we extend the invariant subspace method to a class of short pulse-type equations. Complete classification results with invariant subspaces from 2 to 5 dimensions are provided. The key step is to take subspaces of solutions of linear ordinary differential equations as invariant subspaces that nonlinear operators admit. Some concrete examples and corresponding reduced systems are presented to illustrate this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.