Abstract

In this tutorial paper, an overview is given of progress over the past ten to fifteen years towards reliable and efficient numerical solution of various types of Riccati equations. Our attention will be directed primarily to matrix-valued algebraic Riccati equations and numerical methods for their solution based on computing bases for invariant subspaces of certain associated matrices. Riccati equations arise in modeling both continuous-time and discrete-time systems in a wide variety of applications in science and engineering. One can study both algebraic equations and differential or difference equations. Both algebraic and differential or difference equations can be further classified according to whether their coefficient matrices give rise to so-called symmetric or nonsymmetric equations. Symmetric Riccati equations can be further classified according to whether or not they are definite or indefinite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call