Abstract

We generate conservation laws for the one dimensional nonconservative Fokker–Planck (FP) equation, also known as the Kolmogorov forward equation, which describes the time evolution of the probability density function of position and velocity of a particle, and associate these, where possible, with Lie symmetry group generators. We determine the conserved vectors by a composite variational principle and then check if the condition for which symmetries associate with the conservation law is satisfied. As the Fokker–Planck equation is evolution type, no recourse to a Lagrangian formulation is made. Moreover, we obtain invariant solutions for the FP equation via potential symmetries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.