Abstract

We prove that any subset of ?2 parametrized by a C 1 periodic function and its derivative is the Euclidean invariant signature of a closed planar curve. This solves a problem posed by Calabi et al. (Int. J. Comput. Vis. 26:107---135, 1998). Based on the proof of this result, we then develop some cautionary examples concerning the application of signature curves for object recognition and symmetry detection as proposed by Calabi et al.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.