Abstract

This paper addresses structures of state space in quasiperiodically forced dynamical systems. We develop a theory of ergodic partition of state space in a class of measure-preserving and dissipative flows, which is a natural extension of the existing theory for measure-preserving maps. The ergodic partition result is based on eigenspace at eigenvalue 0 of the associated Koopman operator, which is realized via time-averages of observables, and provides a constructive way to visualize a low-dimensional slice through a high-dimensional invariant set. We apply the result to the systems with a finite number of attractors and show that the time-average of a continuous observable is well-defined and reveals the invariant sets, namely, a finite number of basins of attraction. We provide a characterization of invariant sets in the quasiperiodically forced systems. A theoretical result on uniform boundedness of the invariant sets is presented. The series of theoretical results enables numerical analysis of invariant sets in the quasiperiodically forced systems based on the ergodic partition and time-averages. Using this, we analyze a nonlinear model of complex power grids that represents the short-term swing instability, named the coherent swing instability. We show that our theoretical results can be used to understand stability regions in such complex systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.