Abstract

We study Hilbert's fourteenth problem from a geometric point of view. Nagata's celebrated counterexample demonstrates that for an arbitrary group action on a variety the ring of invariant functions need not be isomorphic to the ring of functions of an affine variety. In this paper we will show that nevertheless it is always isomorphic to the ring of functions on a quasi-affine variety. Mathematics Subject Classification (2000): 13A50, 14R20, 14L30

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.