Abstract

Let Γ < GL n (F) be a countable non-amenable linear group with a simple, center free Zariski closure. Let Sub(Γ) denote the space of all subgroups of Γ with the compact, metric, Chabauty topology. An invariant random subgroup (IRS) of Γ is a conjugation invariant Borel probability measure on Sub(Γ). An IRS is called non-trivial if it does not have an atom in the trivial group, i.e. if it is non-trivial almost surely. We denote by IRS0(Γ) the collection of all non-trivial IRS on Γ. Theorem 0.1: With the above notation, there exists a free subgroup F < Γ and a non-discrete group topology on Γ such that for every μ ∈ IRS0(Γ) the following properties hold: Φ: (Sub(Γ), μ) → (Sub(F),Φ*μ) Δ → Δ ∩ F is an F-invariant isomorphism of probability spaces. A more technical version of this theorem is valid for general countable linear groups. We say that an action of Γ on a probability space, by measure preserving transformations, is almost surely non-free (ASNF) if almost all point stabilizers are non-trivial. Corollary 0.2: Let Γ be as in the Theorem above. Then the product of finitely many ASNF Γ-spaces, with the diagonal Γ action, is ASNF. Corollary 0.3: Let Γ then Δ = , μ almost surely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call