Abstract
Trace forms have been well studied as invariant quadratic forms on finite dimensional Lie algebras; the best known of these forms in the Cartan-Killing form. All those forms, however, have the ideal [L, L] ∩ R (with the radical R) in the orthogonal L⊥ and thus are frequently degenerate. In this note we discuss a general construction of Lie algebras equipped with non-degenerate quadratic forms which cannot be obtained by trace forms, and we propose a general structure theorem for Lie algebras supporting a non-degenerate invariant quadratic form. These results complement and extend recent developments of the theory of invariant quadratic forms on Lie algebras by Hilgert and Hofmann [2], keith [4], and Medina and Revoy [7].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.