Abstract
We introduce a method for constructing invariant probability measures of a large class of non-singular volume-preserving flows on closed, oriented odd-dimensional smooth manifolds using pseudoholomorphic curve techniques from symplectic geometry. These flows include any non-singular volume preserving flow in dimension three, and autonomous Hamiltonian flows on closed, regular energy levels in symplectic manifolds of any dimension. As an application, we use our method to prove the existence of obstructions to unique ergodicity for this class of flows, generalizing results of Taubes and Ginzburg–Niche.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.