Abstract

In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this case, we also prove that saddle periodic points are dense in the support of the measure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.