Abstract

The stability of traveling wave solutions of scalar viscous conservation laws is investigated by decomposing perturbations into three components: two far-field components and one near-field component. The linear operators associated to the far-field components are the constant coefficient operators determined by the asymptotic spatial limits of the original operator. Scaling variables can be applied to study the evolution of these components, allowing for the construction of invariant manifolds and the determination of their temporal decay rate. The large time evolution of the near-field component is shown to be governed by that of the far-field components, thus giving it the same temporal decay rate. We also give a discussion of the relationship between this geometric approach and previous results, which demonstrate that the decay rate of perturbations can be increased by requiring that initial data lie in appropriate algebraically weighted spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.