Abstract

Invariant manifolds provide important information about the structure of flows. When basins of attraction are present, the stable invariant manifold serves as the boundary between these basins. Thus, in experimental applications such as vibrations problems, knowledge of these manifolds is essential to understanding the evolution of phase space trajectories. Most existing methods for identifying invariant manifolds of a flow rely on knowledge of the flow field. However, in experimental applications only knowledge of phase space trajectories is available. We provide modifications to several existing invariant manifold detection methods which enables them to deal with trajectory only data, as well as introduce a new method based on the concept of phase space warping. The method of Stochastic Interrogation applied to the damped, driven Duffing equation is used to generate our data set. The result is a set of trajectory data which randomly populates a phase space. Manifolds are detected from this data set using several different methods. First is a variation on manifold “growing,” and is based on distance of closest approach to a hyperbolic trajectory with “saddle like behavior.” Second, three stretching based schemes are considered. One considers the divergence of trajectory pairs, another quantifies the deformation of a nearest neighbor cloud, and the last uses flow fields calculated from the trajectory data. Finally, the new phase space warping method is introduced. This method takes advantage of the shifting (warping) experienced by a phase space as the parameters of the system are slightly varied. This results in a shift of the invariant manifolds. The region spanned by this shift, provides a means to identify the invariant manifolds. Results show that this method gives superior detection and is robust with respect to the amount of data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.