Abstract

Second-order dynamical systems are of paramount importance as they arise in mechanics and many applications. It is essential to have workable explicit criteria in terms of the coefficients of the equations to effect reduction and solutions for such types of equations. One important aspect is linearization by invertible point transformations which enables one to reduce a non-linear system to a linear system. The solution of the linear system allows one to solve the non-linear system by use of the inverse of the point transformation. It was proved that the n-dimensional system of second-order ordinary differential equations obtained by projecting down the system of geodesics of a flat (n+1)-dimensional space can be converted to linear form by a point transformation. This is a generalization of the Lie linearization criteria for a scalar second-order equation. In this case it is of the maximally symmetric class for a system and the linearizing transformation as well as the solution can be directly written down. This was explicitly used for two-dimensional dynamical systems. The criteria were written down in terms of the coefficients and the linearizing transformation allowed for the general solution of the original system. Here the work is extended to a three-dimensional dynamical system and we find explicit criteria, including the linearization test given in terms of the coefficients of the cubic in the first derivatives of the system and the construction of the transformations, that result in linearization. Applications to equations of classical mechanics and relativity are given to illustrate our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.