Abstract
We consider a continuous version of the classical notion of Banach limits, i.e., normalized positive linear functionals on L∞(R+) invariant under translations f(x)↦f(x+s) of L∞(R+) for every s≥0. We give one of its characterizations in terms of the invariance under the operation of a certain linear transformation on L∞(R+). We also deal with invariant linear functionals under dilations f(x)↦f(rx), r≥1 and give a similar characterization via the Hardy operator. Applications to summability methods are presented in the last section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.