Abstract

We present an algorithm for identifying linear mixtures of a specified set of materials in 0.4-2.5 microm airborne imaging spectrometer data. The algorithm is invariant to the illumination and atmospheric conditions and the relative amounts of the specified materials within a pixel. Only the spectral reflectance functions for the specified materials are required by the algorithm. Invariance over illumination and atmospheric conditions is achieved by incorporating a physical model for scene variability in the constrained optimization formulation. The algorithm also computes estimates of the amounts of the specified materials in identified mixtures. We demonstrate the effectiveness of the algorithm by using real and synthetic Hyperspectral Digital Imaging Collection Experiment imagery acquired over a range of conditions and altitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.