Abstract

The real special linear group of degree n naturally acts on the vector space of n× n real symmetric matrices. How to determine invariant hyperfunction solutions of invariant linear differential equations with polynomial coefficients on the vector space of n× n real symmetric matrices is discussed in this paper. We prove that every invariant hyperfunction solution is expressed as a linear combination of Laurent expansion coefficients of the complex power of the determinant function with respect to the parameter of the power. Then the problem is reduced to the determination of Laurent expansion coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.