Abstract

In this paper, we construct low-dimensional manifolds of reduced description for equations of chemical kinetics from the standpoint of the method of invariant manifold (MIM). MIM is based on a formulation of the condition of invariance as an equation, and its solution by Newton iterations. A grid-based version of MIM is developed (the method of invariant grids). We describe the Newton method and the relaxation method for the invariant grids construction. The problem of the grid correction is fully decomposed into the problems of the grid's nodes correction. The edges between the nodes appear only in the calculation of the tangent spaces. This fact determines high computational efficiency of the method of invariant grids. The method is illustrated by two examples: the simplest catalytic reaction (Michaelis–Menten mechanism), and the hydrogen oxidation. The algorithm of analytical continuation of the approximate invariant manifold from the discrete grid is proposed. Generalizations to open systems are suggested. The set of methods covered makes it possible to effectively reduce description in chemical kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call