Abstract
In this two-paper series, we prove the invariance of the Gibbs measure for a threedimensional wave equation with a Hartree nonlinearity. The novelty lies in the singularity of the Gibbs measure with respect to the Gaussian free field. In this paper, we focus on the dynamical aspects of our main result. The local theory is based on a paracontrolled approach, which combines ingredients from dispersive equations, harmonic analysis, and random matrix theory. The main contribution, however, lies in the global theory. We develop a new globalization argument, which addresses the singularity of the Gibbs measure and its consequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.