Abstract

This paper examines up to third-order geometric properties of wrist path and the first-order property of wrist trajectory (wrist speed) for spatial pointing movements. Previous studies report conflicting data regarding the time invariance of wrist-path shape, and most analyses are limited to the second-order geometric property (straightness, or strictly speaking, curvature). Subjects performed point-to-point reaching movements between targets whose locations ensured that the wrist paths spanned a range of lengths and lay in various portions of the arm's spatial workspace. Movement kinematics were recorded using electromagnetic sensors located on the subject's arm segments and thorax. Analysis revealed that wrist paths tend to lie in planes and to curve more as movement speed decreases. The orientation of the wrist-path plane depends on the reaching task but does not vary significantly with movement speed. The planarity of wrist paths indicates that the paths have close to zero torsion-a third-order geometric property. Wrist-speed profiles showed multiple peaks for sufficiently slow and long lasting movements, indicating deviation from the well-known, bell-shaped profile. These kinematic findings are discussed in light of various motor control theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call