Abstract

A scale-invariant model of statistical mechanics is described leading to invariant Enskog equation of change that is applied to derive invariant forms of conservation equations for mass, thermal energy, linear momentum, and angular momentum in chemically reactive fields. Modified hydro-thermo-diffusive theories of laminar premixed flames for (1) rigid-body and (2) Brownian-motion flame propagation models are presented and are shown to be mathematically equivalent. The predicted temperature profile, thermal thickness, and propagation speed of laminar methane–air premixed flame are found to be in good agreement with existing experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.