Abstract
A scale-invariant model of statistical mechanics is described leading to invariant Boltzmann equation and the corresponding invariant Enskog equation of change. A modified form of Cauchy stress tensor for fluid is presented such that in the limit of vanishing intermolecular spacing, all tangential forces vanish in accordance with perceptions of Cauchy and Poisson. The invariant forms of mass, thermal energy, linear momentum, and angular momentum conservation equations derived from invariant Enskog equation of change are described. Also, some exact solutions of the conservation equations for the problems of normal shock, laminar, and turbulent flow over a flat plate, and flow within a single or multiple concentric spherical liquid droplets made of immiscible fluids located at the stagnation point of opposed cylindrically symmetric gaseous finite jets are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.