Abstract
A conservative invariant domain preserving arbitrary Lagrangian Eulerian method for solving nonlinear hyperbolic systems is introduced. The method is explicit in time, works with continuous finite elements, and is first-order accurate in space. One original element of the present work is that the artificial viscosity is unambiguously defined irrespective of the mesh geometry/anisotropy and does not depend on any ad hoc parameter. The proposed method is meant to be a stepping stone for the construction of higher-order methods in space by using appropriate limitation techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.