Abstract

Let\(\bar D\) be the invariant Cauchy Riemann operator and\(\mathcal{M}_m = D^m \bar D^m \) the corresponding invariant Laplacians on a bounded symmetric domain. We calculate the eigenvalues ofM m on spherical functions. In particular we prove that for a symmetric domain of rank two the operatorsM 1,M 3 generate all invariant differential operators. We also find the eigenvalues of the generators introduced by Shimura.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.